

Indian Minerals Yearbook 2019

(Part-I)

58th Edition

STATE REVIEWS (Andhra Pradesh)

(ADVANCE RELEASE)

GOVERNMENT OF INDIA MINISTRY OF MINES INDIAN BUREAU OF MINES

> Indira Bhavan, Civil Lines, NAGPUR – 440 001

PHONE/FAX NO. (0712) 2565471 PBX : (0712) 2562649, 2560544, 2560648 E-MAIL : cme@ibm.gov.in Website: www.ibm.gov.in

March, 2021

ANDHRA PRADESH

Mineral Resources

Andhra Pradesh is the sole producer of apatite. The State is the leading producer of barytes, ball clay, dolomite, garnet (abrasive), laterite, limestone, quartz, quartzite, silica sand and vermiculite. It accounts for 92% barytes, 40% calcite, 41% mica, 31% each kyanite & garnet, 19% titanium minerals, 16% bauxite, 15% dolomite, 13% sillimanite and 12% each vermiculite & limestone resources of the country. Andhra Pradesh is endowed with the internationally known black, pink, blue and multicoloured varieties of granites. Krishna-Godavari basin areas in this State have emerged as new promising areas for hydrocarbons, especially natural gas.

Important minerals occurring in Andhra Pradesh are: apatite in Visakhapatnam district; asbestos in Cuddapah district; ball clay in West Godavari district; barytes in Anantapur, Cuddapah, Krishna, Kurnool, Nellore & Prakasam districts; calcite in Anantapur, Cuddapah, Kurnool & Visakhapatnam districts; china clay in Anantapur, Chittoor, Cuddapah, East Godavari, West Godavari, Guntur, Kurnool, Nellore & Visakhapatnam districts; coal in Godavari Valley Coalfield; corundum in Anantapur districts; dolomite in Anantapur & Kurnool districts; felspar in Anantapur, Cuddapah, West Godavari, Nellore & Vizianagaram districts; fireclay in Chittoor, Cuddapah, East Godavari, West Godavari, Kurnool & Srikakulam districts; garnet in East Godavari, Nellore & Srikakulam districts; granite in Anantapur, Chittoor, Cuddapah, Guntur, Krishna, Nellore, Prakasam, Srikakulam & Vizianagaram districts; iron ore (haematite) in Anantapur, Cuddapah, Guntur, Krishna, Kurnool & Nellore districts; iron ore (magnetite) in Prakasam district; lead-zinc in Cuddapah, Guntur & Prakasam districts; limestone in Anantapur, Cuddapah, East Godavari, West Godavari, Guntur, Krishna, Kurnool, Nellore, Srikakulam, Visakhapatnam & Vizianagaram districts; manganese ore in Srikakulam & Vizianagaram districts; mica in Nellore & Visakhapatnam district; ochre in Anantapur & Cuddapah, West Godavari, Guntur, Kurnool & Visakhapatnam districts;

pyrophyllite in Anantapur, Chittoor & Cuddapah districts; quartz/silica sand in Anantapur, Chittoor, Cuddapah, West Godavari, Guntur, Krishna, Kurnool, Nellore, Prakasam, Srikakulam, Visakhapatnam & Vizianagaram districts; quartzite in Kurnool, Srikakulam, Visakhapatnam & Vizianagaram districts; talc/soapstone/steatite in Anantapur, Chittoor, Cuddapah & Kurnool districts & vermiculite in Nellore & Visakhapatnam districts. Petroleum & natural gas deposits of importance are located in the onshore and offshore areas of Krishna-Godavari basin of the State.

Other minerals that occur in the State are bauxite in East Godavari & Visakhapatnam districts; chromite in Krishna district; copper in Guntur, Kurnool & Prakasam districts; diamond in Anantapur, Krishna & Kurnool districts; gold in Anantapur, Chittoor & Kurnool districts; graphite in East Godavari, West Godavari, Srikakulam, Visakhapatnam & Vizianagaram districts; gypsum in Guntur, Nellore & Prakasam districts; kyanite in Nellore & Prakasam districts; magnesite in Cuddapah district; pyrite in Kurnool district; sillimanite in West Godavari & Srikakulam district; silver in Guntur district; titanium minerals in East Godavari, Krishna, Nellore, Srikakulam & Visakhapatnam districts; and tungsten in East Godavari district (Tables-1 & 2).

Exploration & Development

The details of exploration activities conducted by various agencies for minerals during 2018-19 are furnished in Table - 3.

During 2018-19, National Oil Companies (NOC) continued their operations for exploration of oil and gas in the State.

Production

Andhra Pradesh produces many important minerals. The principal minerals produced in the state were natural gas (ut.), manganese ore, garnet (abrasive), limestone, sillimanite, vermiculite etc. The value of minor minerals' production was estimated at ₹ 16,831 crore for the year 2018-19. The number of reporting mines in the state were 130 in 2018-19 in case of MCDR minerals.

Andhra Pradesh	
as on 01.04.2015:	
Minerals	
Reserves/Resources of	
Table –1:	

			Res	Reserves					Remaining	Remaining Resources				Ē
Mineral	Unit	Proved	Prob	Probable	Total	Feasibility	Pre-feasibility	sibility	Measured	Indicated	Inferred	Reconnaissance Total	ance Total	101a1 resources
			STD121	STD122	(Y)	117/116	STD221	STD222	100/10	266016	ננכעונ	CCUIC	(a) +	(A ⁺ B)
Apatite	tonnes	27715	ı	1680	29395	ı	·	ı	ı	ı	200163	ı	200163	229558
Asbestos	tonnes	20016	·	4617	24633	684984	40408	18355	·	1541	67392		812679	837312
Ball clay#	tonnes	6700417	202950	1049025	7952392	5622514	2842702	10275648	ı	2279330	28044529		49064723	57017115
$Barytes^{\#}$	tonnes 4	48990002	49358	372296	49411656	186544	94489	988514	104322	389630	28165637	105721	30034857	79446513
Bauxite	'000 tonnes		ı		·	ı	ı	·	188971	138120	288176		615267	615267
Calcite#	tonnes	16522	8098	119526	144146	8538	I	105470	8562700	5200	282204		8964112	9108258
China clay [#]	'000 tonnes	2494	953	1889	5337	1508	989	2071	511	688	51427	362	57556	62893
Chromite	'000 tonnes		ı	ı	·	ı	ı	ı	ı	I	0.4		0.4	0.4
Copper											4 4 4			
Ore	'000 tonnes	'	ı	'	ı	686		105		5791	000	ı	7582	7582
INICIAL		ı	ı	ı	ı	0.00	ı	CU.1	I	0+.16	70.0	ı	+	+
Corundum [#]	tonnes	200	'		200		L		ı	ı			L	207
Diamond	carat		·	'	ı	'		•	200483	1524317	98155	•	1822955	1822955
$Dolomite^{\#}$	'000 tonnes	86134	11371	17539	115045	115045 176476.97	31908	38324	22373	LL	910217	4301	1183677	1298722
Felspar#	tonnes	2295253	150795	556263	3002311	4427537	50911	2379650	361444	1819937	1571271	442950	11053700	14056011
Fireclay [#]	'000 tonnes	1252	40	642	1934	771	1400	1574	56	417	10211	132	14562	16496
Garnet	tonnes	1183898	4500	568750	1757148	12189	232525	791238	18	8800000	5674011	ı	15509981	17267129

11-3

STATE REVIEWS

(contd)

Miserel Unit Proved Froved Total From term Researce Indiana Inferred Recommissione Cluit (w-b) Giol STD311 STD312 STD313 STD313 STD313 STD314 (b) (w-b) Giol STD STD STD31 STD313 STD313 STD314 (b) (b) Giol STD STD31 STD313 STD313 STD313 STD314 (b) (b) Giol STD STD31 STD313 STD313 STD313 STD314 (b) (b) Giol STD STD S4 243 S 353 STD314 (b) 236036 236036 Granic Wo Unit STD 243 243 54 312 2403 54 440 244 440 Granic Wo Unit Unit STD 243 243 243 243 243 243 243 243				Reserves	ves					Remaining	Remaining Resources				E
NULL NULL </th <th>Mineral</th> <th>Unit</th> <th>Proved</th> <th>Probat</th> <th>le</th> <th>Total</th> <th>Feasibility</th> <th>Pre-feasi</th> <th>bility</th> <th>Measured</th> <th>Indicated</th> <th></th> <th>Reconnaiss</th> <th>ance Total</th> <th>resources</th>	Mineral	Unit	Proved	Probat	le	Total	Feasibility	Pre-feasi	bility	Measured	Indicated		Reconnaiss	ance Total	resources
			SID 111		STD122	(Y)	S1D211	STD221	STD222	S1D331	S1D332	STD333	S1D33		(A+B)
	Gold Ore (primary	') tonnes		3902725		3902725	655133	,	889515	291000	55000	6980031		8870679	12773404
e ⁿ s - - - - - - 2360396 - 2404 - 404 -	Metal (primary) tonnes	I	8.49		8.49		I	3.57	1.08	0.17	23.78	I	31.05	39.54
integration	Granite ^{##} (Dim. stone)) '000 cu. m		ı			ı		ı	ı	ı	2360396		2360396	2360396
m ^r 000 tomes $ -$ <td>Graphite</td> <td>tonnes</td> <td>ı</td> <td>I</td> <td>1</td> <td>,</td> <td>ı</td> <td>1195</td> <td>1135</td> <td>·</td> <td>1122</td> <td>697575</td> <td>I</td> <td>701027</td> <td>701027</td>	Graphite	tonnes	ı	I	1	,	ı	1195	1135	·	1122	697575	I	701027	701027
ret 311 34 <td>$\operatorname{Gypsum}^{\#}$</td> <td>'000 tonnes</td> <td>1</td> <td>ı</td> <td>ı</td> <td>ı</td> <td>ı</td> <td>ı</td> <td>ı</td> <td></td> <td></td> <td>404</td> <td>ı</td> <td>404</td> <td>404</td>	$\operatorname{Gypsum}^{\#}$	'000 tonnes	1	ı	ı	ı	ı	ı	ı			404	ı	404	404
ref metic) 000 tonnes - - - - - - 139209 1392098 1392098 1392098 1392098 1392098 1392098 132 metic) 000 tonnes 1 - - - - - - - 1392098 1320428 320 te ^c 000 tonnes 13574 680 1710 15964 23238 5107 2244 24 1107 889 - 32608 3268 time 000 tonnes 13574 680 1753 688.65 68.65 68.65 - 22689 - 32608 - 236.70 - 32699 - 326.699 - 326.699 - 326.699 - 326.699 - 326.699 - 24.4 1107 889 - 356.49 - 356.49 - 356.89 - 356.89 - 356.89 - 356.89 - 356.89<	Iron ore (hematite)	'000 tonnes			11832	29768		49589	68425	377	4666	147628	13	311294	341062
te total for the formes for the for	Iron ore (magnetite)		1		ı	ı	43105			13800	1266666	68527	ı	1392098	1392098
te^{t} 000 tonmes 13574 680 1710 15964 23238 5107 2244 24 1107 889 $.$ 22669 tine 000 tonmes $ 22689$ $.$ 836.65 $.$ 836.68 $.$ 836.88	Kyanite	tonnes	ı	ı	ı	I	ı	ı	399		ı	32003829	ı	32004228	32004228
inc000 tonnes226891metal000 tonnes226891metal000 tonnes236.88-1metal000 tonnes88.65-83.681metal000 tonnes83.68-83.681metal000 tonnes83.63-83.681metal000 tonnes83.6883.681metal000 tonnes </td <td>Laterite[#]</td> <td>'000 tonnes</td> <td>13574</td> <td></td> <td>171(</td> <td></td> <td></td> <td></td> <td>2244</td> <td></td> <td></td> <td></td> <td>. 6</td> <td>32608</td> <td>48572</td>	Laterite [#]	'000 tonnes	13574		171(2244				. 6	32608	48572
	Lead-zinc														
metal '000 tonnes - - - - - - 88.65 - 836.88 - -	Ore	'000 tonnes	1	ı	ı	I	ı	ı	ı	1000	4159	17530	I	22689	22689
metal000 tonnes $ 63.16$ tone000 tonnes103483197133851331408329269901 53722 706890 82112 268002 18666131 3466741 23513499 249 tone000 tonnes1003483197133851331408329269901 53722 706890 82112 268002 18666131 3466741 23513499 249 site000 tonnes $ 80$ $ 80$ nese000 tonnes 2335 637 2086 4958 675 387 773 188 3220 6987 457 12687 100 tonnes 2235 637 2086 4958 1896000 $ 9330994$ 1289400 51668132 $ 17733126$ 2575 kg 6192537 18293548 $ 80236085$ 1896000 $ 93830994$ 12894000 51668132 $ 177333126$ 2575	Lead metal	'000 tonnes	1	ı	ı	I	ı	ı	ı	28.70	119.53	688.65	I	836.88	836.88
tone 000 tonnes 1003483 19713 385133 1408329 269901 53722 706890 82112 268002 18666131 3466741 23513499 249 esite 000 tonnes $-$ - $-$ - $-$ - $-$ - $-$ 80 - 80 - 80 - 80 - 80 - 80 - 80 - 80	Zinc metal	'000 tonnes	1		·	I	'	ı	ı	12.40	43.57	7.19	ı	63.16	63.16
site 000 tomes 80 - 80 inese 000 tomes 2235 637 2086 4958 675 387 773 188 3220 6987 457 12687 kg 61942537 18293548 - 80236085 18960000 93830994 12894000 51668132 - 177353126 2575	Limestone	'000 tonnes	1003483	19713	385133	1408329	269901	53722	706890	82112	268002	18666131	3466741	23513499	24921828
unese 1000 tonnes 2235 637 2086 4958 675 387 773 188 3220 6987 457 12687 kg 61942537 18293548 - 80236085 18960000 93830994 12894000 51668132 - 177353126 2575	Magnesite	'000 tonnes		ı		I	'	ı	ı	'		80	ı	80	80
000 tonnes 2235 637 2086 4958 675 387 773 188 3220 6987 457 12687 kg 61942537 18293548 - 80236085 18960000 93830994 12894000 51668132 - 177353126 2575	Manganese														
kg 61942537 18293548 - 80236085 18960000 93830994 12894000 51668132 - 177353126 257	ore	'000 tonnes		637	2086	4958		387	773	188	3220	6987	457	12687	17645
	$Mica^{\#}$		61942537	18293548	1	80236085		ı	ı	93830994	12894000	51668132	- 1	77353126	257589211
															[1)

\sim
÷σ`
_
U
q
0
ō
9
\sim
_
_
0
•
9
þ,
ab
ab
ab

			Res	Reserves					Remaining	Remaining Resources				Totol
Mineral	Unit	Proved	Prob	Probable	Total	Feasibility	Pre-feasibility	bility	Measured	Indicated	Inferred	Reconnaissance Total	ance Total	resources
			STD121	STD122	(Y)		STD221	STD222	100010	700010	CCCU10	46 CU 1 C	(g)	$(A^{+}B)$
Ochre#	tonnes	5284990	1	64602	5349592	5349592 1404229.67	430231	1087353	347681	'	3596595	2121	6868210	12217802
Pyrite	'000 tonnes	s.	1		I		ı				880	ı	880	880
Pyrophyllite [#] tonnes	tonnes	39376	1	9441	48817	366494	75201	311209	ı	108831	737855		1599590	1648407
Quartz- silica sand [#]	'000 tonnes	s 94483	3429	13687	111599	32690	4039	17329	7081	6691	45661	11599	125090	236690
Quartzite#	'000 tonnes	s 16001	'	1389	17390	2103	8357	6418		3975	24797	1256	46905	64295
Sillimanite	tonnes	2045	1	37	2082	15	11278	12	267	7430300	1346988	'	8788861	8790943
Silver* Ore	tonnes		ı	ı		ı	ı	ı	I	ı	16950000		16950000	16950000
Metal	tonnes	ı	•	•	ı	I	•				128.13		128.13	128.13
Shale [#]	'000 tonnes	s 1120	162	272	2 1554	199	ı	563	ı	I	1142	90	1994	3548
Slate [#]	'000 tonnes	109	667	ı	776	ı	ı	1075	ı	I	1511	I	2586	3362
Talc/soapstone/ steatite#	e/ '000 tonnes	s 1875	482	1001	3358	197	725	1804	184	369	3611	248	7137	10495
Tungsten* Ore Contained	tonnes	'	I		ı	I	ı		3640000	4700800	5952500	509000	14802300	14802300
WO ₃	tonnes	I		ı	I	ı	I	ı	5096	6574.64	8273.65	318.28	20262.57	20262.57
Vermiculite	tonnes	60892	19413	30566	110871	2040	917	5850	58396	5127	88865	ı	161195	272066
Figures rounded off # Declared as Minor Mineral vide Gazette Notification dated 10.02.2015	ıded off ıs Minor Mi	ineral vide	e Gazette 1	Votification	dated 10	. 02.2015.								

11-5

Minor Mineral before Gazette Notification dated 10.02.2015. Note: The proved and indicated balance recoverable reserves of crude oil and natural gas as on 1.4.2019 in the State are 3.36 million tonnes and 63.57 billion cu. m, respectively.

STATE REVIEWS

(In million tonnes)

Coalfield	Proved	Indicated	Inferred	Total
Total/Godavari Valley	97.12	1078.44	431.65	1607.21

Source: Coal Directory of India, 2018-19.

Table – 3: Details of Exploration Activities in Andhra Pradesh, 2018-19

Agency/	Location	Map	ping	Dri	lling	C	D - 1
Mineral/ District		Scale	Area (sq km)	No. of boreholes	Meterage	Sampling (No.)	Remarks Reserves/Resources estimated
GSI Base Metal (Copper)							
Nellore	Around Garimanipenta and Vinjamuru	1:2000	1.21	5	633.60	46	Reconnaissance survey (G4 for copper and associated mineralisation was taken up around Garimanipenta and Vinjamuru in the Nellore Greenstone belt. An area of 1.21 sqkm was mapped on 1:2,000 scale. The whole area wa recorded to have thick soil cover A cumulative of 633.60 m o drilling were carried out in five scout boreholes in the area. Three boreholes intersected a few disseminations of sulphides. The analysis of 46 core samples showed copper values up to 0.33%, 0.10% & 0.12% in Borehole APGPT-1 CS-1, 2 & 9 and 0.52%, 0.33% 0.62%, 0.43%, 1.40% and 0.21% in the Borehole APGPT-3/1, 5, 7 8, 12 and 17 respectively Continuation of exploration from previous year field study wa undertaken.
	Around Udayagir and Duttaluru	1:2000	1.0	2	-		During reconnaissance survey (G4 for copper and associated mineralisation, an area of 1 sqkn was mapped on 1:2,000 scale in two blocks, i.e., Masyapeta block (0.8 sqkm) and Tirumalapuran block (0.2 sqkm). Geophysica survey (IP and magnetic) of 20 L km was also carried out. In Masayapeta block, incidence o sulphides (chalcopyrite, pyrite and covellite), malachite and azurite staining were observed ove a zone of 300 m length and 60-70 m width near old. A 200 m length and 20-30 m width zone o sulphide-bearing (chalcopyrite pyrite, covellite, digenite ferrugenised quartzite wa demarcated in Tirumalapuran block. Based on geophysica

Agency/	Location	Ma	pping	Dri	illing	a 1'	
Mineral/ District		Scale	Area (sq km)	No. of boreholes	Meterage	Sampling (No.)	Remarks Reserves/Resources estimated
Iron Ore							survey, high chargeability zone was observed in both Masayapeta and Tirumalapuram blocks. Trench mapping was carried out in the western part of Masayapeta block to trace the continuity or mineralisation. In analytica results, higher copper values were reported in oxidised ferrugemised quartzite with sulphides, quartz vein & intercalated pelitic- psammitic sequence in both the blocks and these indicate incidence of copper and gold mineralisation In Borehole APMAS-1, malachite staining was observed from 19.20 m to 23.30 m depth Mineralisation was observed in the form of pockets and veins from depths 28.90 m to 76.30 m and 96.49 m to 111.49 m. Boreholde APMAS-1 gave encouraging values of copper, 0.59% (30.3 m to 31.3 m), 0.54% (33.3 m to 34.3 m), ar average of 1.58% over 8 m length (43.3 m to 51.3 m) in Zone-I Zone-II reported 0.46% (96.49 m to 97.49 m), 3.07% (100.49 m to 101.49 m) and 2.46% (105.49 m to 106.49 m). In APMAS-02 oxidised sulphides were noticed from 15.46 m to 16.00 m and 17.90 m to 19.50 m.
Ananthapur	Around Obulapuram	-]	Block 1: 0.: Block 2: 1.0 Block 3: 3.5	64 -	-	-	General exploration of G2 stage was initiated around Obulapuran area which lies in the southeastern part of the Sandur Schist Belt. Iror ore was found to occur mainly as

Table – 3 (contd)

(contd)

BMQ and BHQ in the area. Three prospecting blocks for drilling (Block 1: 0.52 sqkm, Block 2: 1.64 sqkm and Block 3: 3.84 sqkm) were identified during the detailed mapping. In Block 1, iron bands were categorised under massive haematite ore (64% to 65% Fe; length: ~450 m; width varying from 3 to 40 m), friable haematite ore (55% to 64 % Fe, length ~550 m; width varying from 20 m to 200 m) and alternate bands of haematite and argillite (47% to 49% Fe; length ~200 m; width varying from 20 m - 50 m). In Block 2, BMQ bands were 1.5 km in length with width

Agency/ Mineral/	Location	Map	ping	Dri	lling	Sampling	Remarks
District		Scale	Area (sq km)	No. of boreholes	Meterage	(No.)	Reserves/Resources estimated
							varying from 10 to 60 m and analysed 30 – 40% Fe. In Block 3 two 5.6 km long BMQ bands were demarcated (width varied from 10 m to 40 m) wich analysed 25 – 40 % Fe. All the three blocks of Obulapuram Iron Ore project come under Bellary RF and Mincheri RF Drilling could not be started due to non-receipt of Forest Clearance
Manganese Or Vizianagaram and Visakhapatnam	Around Kondamosuru	1:25000	100				G4 reconnaissance survey for manganese and graphite mineralisation was carried out in this area. The survey subsumed mapping of 100 sqkm area or 1:25,000 scale. The manganese mineralisation was present in the form of manganiferous zone which showed intimate association with quartzite. It was found to occur as bands, lenses and floats of varying dimensions. The main manganese-rich band was of approximately 1 km strike length with varying width of 5 m to 10 m from Kondamosuru to Mulagapadu. At Silavalasa, the associated with calc-granulite. The dimension of the band was around 200 m x 5 m. Some other occurrences were observed at SW of Mulagapadu 50 m x 10 m, ai Allampadu 30 m x 5 m. Float ores were observed at south of Kondaluddandi with a cumulative dimension of 20 m x 5 m and ai east of Gumaripadu with a cumulative dimension of 50 m x 10 m. Analytical values of manganese (Mn) in bedrock samples, collected from the Mm enriched horizons ranges from 0.03% to 39.64%.
Vizianagaram	Around Garikipenta- Vommi block	1:12500	100		-	-	During G4 reconnaissance survey for manganese ore in this area, ar area of 100 sqkm was covered by Large-Scale Mapping (1:12,500) Manganese zone was identified ir the Solipikonda hill to the north of Kondapeta. It was found to occur as continuous bands in the contact of calc-granulite and garnetiferous quartzo-feldspathic

(contd)

Agency/	Location	Map	oping	Dri	lling	C 1'	Damada
Mineral/ District		Scale	Area (sq km)	No. of boreholes	Meterage	Sampling (No.)	Remarks Reserves/Resources estimated
							gneiss of Khondalite Suite. Surfa- geometry of the mineralised zon appeareed as oval shaped pinchin out towards NW and SE. TI strike length was 309 m with wid varying from 70 to 80 m. TI zone comprised mainly of pyrolusite with occasion occurrence of psilomelane. Th ore minerals were friable in natur Analytical result of bedrood samples showed encouragin values of MnO up to 33.619 Another manganese-rich zone w identified in the Gumpumkond hill to the north east of Garikipet This mineralised band, lenticul in shape, showed a strike leng of 110 m with exposed width 20-25 m. Pyrolusite was th predominant ore mineral in th band. Analytical result of bedrood samples showed MnO value rangin up to 18.0%. The third mangane mineralised zone of length about 200 m and width 30 m w identified in the south-west of Village Jaggarajupeta.
Vizianagaram	Devada block		0.25	1066.85		-	General exploration of G2 stag for manganese ore was carried o by detailed mapping of 0.2 sqk area and drilling of 1066.85 m ar in this block. The Devada bloc lies within the Garividi mangane belt of Vizianagaram district. The manganese mineralisation we found to occurs in the form of su horizontal to gently inclin pocket/lensoid type bodies wi pinching and swelling nature. Twe lenses were delineated. The southern lense was traced for strike length of 300 m with wid of 100 m and average thickne of 30 m. The strike length northern lense was 500 m lon with 300 m width and average thickness of 48 m. Mangane mineralised zones were intersected at different depths in the boreholes of northern ar southern lenses. The analytic results of core samples showed MnO, FeO, SiO ₂ and P ₂ O ₅ conte varying from 1.4 to 70.2%, 0

Table – 3 (contd)

to 45%, 2.3 to 52.15% and 0.6 to

Agency/ Mineral/	Location	Maj	pping	Dri	lling	Sampling	Remarks
District	_	Scale	Area (sq km)	No. of boreholes	Meterage	(No.)	Reserves/Resources estimated
							2.8% respectively. An average of 90 m long manganese zones in southern lense and 135 m long manganese zones in northern lense (based on 10% cut-off grade of MnO) were delineated respectively. Based on availability of chemical data, resource (in part) of Devada block was estimated as 7.6 million tonnes with average grade of 23.6% Mn.
Vizianagaram	Yenubaruva block	-	-	-	-	9 (channel samples)	A G4 stage reconnaissance survey for manganese mineralisation was taken up in this area with an objective to delineate the zone of manganese mineralisation and to assess the grade and resources in the block under reference. The manganese mineralisation was found to occur discontinuously up to a length of 600 m and showed variations from 2 m to 5 m in width and 2 m to 15 m in length. Surficial coating of manganese and old pit indicated that occurrence of manganese would be as lensoidal bodies, which may be highly pinched and swelled in nature. Pyrolusite and psilomelane were the main manganese ore in the area. The analytical results of nine channel samples showed the MnO percentage to be varying from 7.94% to 16.91%.
Vizianagaram and Srikakulam	Chinnabanthupalli and Bakuruvalasa blocks	-	50 0.5 sq. m	1	-	-	Reconnaissance survey (G4) for manganese ore was taken up in this area by Large-Scale Mapping of 50 sqkm followed by detailed mapping of 0.5 sq. m In Chinnabanthupalli block, major rock types encountered were garnet sillimanite gneiss, calc granulite, pegmatite. Three old manganese pits were mapped and these were located within the weathered garnet sillimanite gneiss. Old pit examinations indicated that manganese occured as lensoidal bodies and were highly pinched and swelled type in nature. Pyrolusite and wad were the main manganese ore of the area. One borehole drilled at Chinnabanthupalli block did not intersect any mineralisation. The Bakuruvalasa (contd)

Table – 3 (contd)

Agency/	Location	Mapping		Dri	lling	C	
Mineral/ District		Scale	Area (sq km)	No. of boreholes	Meterage	Sampling (No.)	Remarks Reserves/Resources estimated
							block (0.25 sqkm) is located i between the two active manganess mines. Manganese pit inside th block was 180 m in length an 15-20 m in width with variabl depth of 8 m to 30 m. Based on th data collected from both the activ mines, it was noted that th mineralisation is located at th contact between weathere feldspathic quartzites an manganiferous quartzite as narrow linear band of 3-5 m widt extending over a strike lengt of about 500 m. These lither contacts and mineralisation wer interpolated to the block area unde investigation and the inferre mineralisation was demarcated.
Srikakulam and Visakhapatnam	11	1:12500	100	-	-	-	During reconnaissance survey (G4 for manganese and graphit mineralisation in this area, an are of 100 sqkm was mapped or 1:12,500 scale with the objectiv to delineate potential zones o manganese and graphite Disseminated graphite specks wer observed at a few places in association with Khondalite SEM analysis revealed presence o monazite, zircon, baddeleyit (rare zirconium oxide) and barium bearing feldspar. The garnets wer of pyrope, almandine, and spessartite and grossular variety A few grains of apatite, rutile ilmenite, pyrrhotite and allanit were also observed.
Srikakulam	Yenubaruva block	-	-	-	-	9	G4 stage reconnaissance survey for manganese mineralisation was taken up in Yenubaruva block with an objective to delineate the zone of manganese mineralization and to assess the grade and resources in the block unde reference. The dimension of the manganese mineralisation occured discontinuously up to a length o 600 m varying from 2 m to 5 m in width and 2 m to 15 m in length Surficial coating of manganese and old pit indicated occurrence of

Table – 3 (contd)

(contd)

old pit indicated occurrence of highly pinched and swelled manganese lensoidal bodies. Pyrolusite and psilomelane were

Table - 3	(contd)
-----------	---------

Agency/ Mineral/	Location	Mapping		Drilling		Samulina	Remarks	
District		Scale	Area (sq km)	No. of boreholes	Meterage	Sampling (No.)	Reserves/Resources estimated	
							main manganese ore in the area The analytical results, of ninc channel samples showed MnC percentage varying from 7.94% to 16.91%.	
G r a p h i t e Vizianagaram and Visakhapatnam	Satapi	-	-		-	-	At Satapi, Graphite mineralisation was observed having dimension o 500 m x 50 m. In the hand specimen, graphite observed as flakes. At places, it is zoned bu mostly it is disseminated with a visual estimation of up to 10% graphite.	
Heavy Minera off Baruva - Bo		-	50	-	-	66	To evaluate placer mineral resource, an area of 50 sqkm of Baruva - Borivanka, Andhra Pradesh Coast was covered by 651 km bathymetry and 60 vibrocore samples at a grid of 1 km x 1 km within the water a depth ranges from 18.2 m up to 48.5 m were collected. The survey area characterised by sand showed variations from fine sand to very coarse sand in the surface and from clayey sand to coarse sand in the bottom of the vibrocore samples Heavy mineral concentration was found to vary from 0.32 wt% to 20.73 wt% with an average concentration of 7.93 wt%.	
REE East Godavari	Tapasikonda- Sitapalli area	-	3	-	-	196	Reconnaissance survey for REH and Rare Metal (RM mineralisation was taken up in this area. In the survey area khondalite, charnockite and migmatite suite of rocks were seen intruded by aplites, pegmatites and quartz veins. Graphite and tungsten were observed to occu as small pockets and lenses within the graphite gneiss Disseminations of graphite were noted at places. The old workings for graphite were observed in the Tapasikonda Reserved Forest and NE of Etipalli. Weathereek khondalites showing disseminated graphite grains along the foliation intruded with quartz veins in the old workings. Wolframite observed in a stray quartz vein sample	

Agency/ Mineral/	Location	Mapping		Dri	lling	Samulina	Devee	
District		Scale	Area (sq km)	No. of boreholes	Meterage	Sampling (No.)	Remarks Reserves/Resources estimated	
							collected from the dump materia in the Tapasikonda reserve forest.	
Chittoor & Cuddapah	Nadigadda block		3			196	Reconnaissance survey for RE and RM occurrences in Nadigado block of Chittoor & Cuddapa districts was taken up in the earlier explored (2015-16) area is which the total REE value were observed to vary from 107.42 ppm to 2,162.4 ppm an 18 composite samples out of 196 showed values more tha 1,000 ppm. The source rock for REE in the study area was alka feldspar granite and pegmatif which was found to occur in the southern margin of the study area and have intrusive contact with other granitoids of the area. The main intrusion observed in east of Malapalle was found to extend for about 3 sqkm area. Petrographi study indicated the concentration of REE minerals to be more is alkali granite and pegmatif. Monazite and allanite were the REE-bearing minerals identified They were seen to occur a primary and secondar concentration in both alka granite and pegmatite. The secondary concentration was observed as fracture filling withi quartz grain. In all the sample the HREE value was less than the LREE value. The total REE value of BRS was in the range from 2 to 517 ppm, PCS ranged from 6 to 943 ppm, SSS ranged from 19 to 2,448 ppm, PTS ranged from 2 to 986 ppm and SS ranged from 2 to 1,043 ppm. These higher REE values located over bioting granite and biotite granite gneiss were rich in pegmatite in the central part of the study area.	
Rashtriya Ispa Limestone	t Nigam Ltd.(RIN	L)						
Krishna	Jaggayyapetta mine, Budawada	-	12.95	83	4000.00	-	The tentaive total geologica resources was estimated at about 200 million tennes. The final	

Krishna	Jaggayyapetta
	mine, Budawada
	village,
	Jaggayyapetta
	Mandal

Table – 3 (contd)

resources was estimated at about 900 million tonnes. The final reserves/resources estimation are in progress.

(contd)

Table - 3 (concld)

Agency/ Mineral/	Location	Maj	pping	Dri	lling	Sampling	Remarks	
District		Scale	Area (sq km)	No. of boreholes	Meterage	(No.)	Reserves/Resources estimated	
Manganese Vizianagaram Ouartz	Garbham Manganese Mine, Merakamudidam (264.5 ha)	-	-	28	1547.0	-	Exploration for manganese was carried out over an area of 264.54 ha in Garbham manganese mine, Merakamudidam, Vizianagaram district. A total of 1574.00 m core drilling was carried out in 28 boreholes in the potential areas of mining lease. The central and west Garbham areas were identified to be mineralised. The tentative total resources estimated in the area were 15 million tonnes. The final resources estimation are in process.	
Visakhapatnam	Kintada quartz mine (3.24 ha), Sy.No.153, Kintada village, K.Kotapadu Tahsil	-	-	-	-	5	Chip sampling was carried out in lease area. The total geological resources available in the area was placed at 1.91 million tonnes.	

Table-4: Mineral Production in Andhra Pradesh, 2016-17 to 2018-19(Excluding Atomic Minerals)

(Value in ₹'000)

			2016-17			2017	-18	2018-19 (P)		
Mineral	Unit	No. of mines	Quantity	Value ^s	No. of mines	Quantity	Value ^s	No. of mines	Quantity	Value ^s
All Minerals		136	1	35816123	135		179748794	130		181237545
Natural Gas (ut.)	m c m	-	868	-	-	959	-	-	1046	-
Petroleum (crude)	'000t	-	276	-	-	322	-	-	296	-
Gold	kg	1	-	-	1	-	-	1	-	-
Iron Ore	'000t	22	485	264799	20	674	402892	16	655	419460
Manganese Ore	t	26	232257	729003	27	172174	706314	27	293279	1238252
Apatite	t	1	-	-	1	-	-	-	-	-
Garnet (abrasive)	t	2	51243	565747	2	111513	1283793	2	72521	1031030
Sillimanite*	t	-	37109	321945	-	53749	472024	-	31243	289278
Limestone	'000t	79	35515	7446888	80	38889	8567180	80	48290	9944351
Vermiculite	t	5	7225	2441	4	4790	2891	4	2456	1474
Minor Minerals®	a)	-	- 1	26485300	-	-	168313700	-	-	168313700

Note : The number of mines excludes Atomic, Fuel, and minor minerals.

\$ Excludes the value of Fuel minerals.

*Associated with Garnet (abrasive).

@ Figures for earlier years have been repeated as estimates because of non-receipt of data for 2018-19.

Mineral-based Industry

The present status of each mineral-based industry is not readily available. However, the

Table – 5 : Principal Mineral-based Industries

Industry/plant Capacity ('000 tpy) Asbestos/Cement sheets Hyderabad Industries Ltd, Ibrahimpatnam, 3000 Distt Krishna Ramco Industries, Ibrahimpatnam, Distt Krishna NA Cement 300 ACC Ltd, (formerly, Encore cement), Vishakhapatnam (G) Andhra Cements Ltd, (Visaka Cement Works), 540 Durga Nagar, Distt Visakhapatnam (G) Andhra Cements Ltd, Durga Cement Works, 2310 Dachepalli, Distt Guntur Anjani Portland Cement Ltd, Chintalapalem, 1925 Mellacheruvu Bharthi Cement Corp. Pvt. Ltd, Nallingayapalli, 5000 Distt Cuddapha Bhavya Cement, Thangeda, Distt Guntur 1400 BMM Cement Ltd, Gudipadu, Yediki 950 Dalmia Cement (Bharat) Ltd, Cuddapha 4060 2600(Clincker) Deccan Cement Ltd, Ravipahad, Nareducherla 1800 Deccan Cement Ltd, Ravipahad, Palakeedu 1800 Nalgonda 91 Greygold Cement Ltd, Hyderabad Himadri Cement Ltd, Vedadri, Jaggyyapet 247.5 India Cements Ltd, Chilamkur, Distt Cuddapha 1460 India Cements Ltd, Malkapur, Tandur 2900 India Cements Ltd, Vishnupuram Work, Wadapally, Mariyalaguda 3500 India Cements Ltd, Yeraguntla, Distt Cuddapha 1000 540(Clincker) My home Industries Pvt. Ltd, Mellacheruvu, 3200 Nalgonda UltraTech Cements Ltd, Jaypee Balaji Cement, 5000 Budawada, Distt Krishna 4800 JSW Cement Ltd, Nandyal, Distt Kurnool JSW Cement Ltd, Bilakalagudur, 4800 Gadivemula KCP Ltd, Macherla, Distt Guntur 825 KCP Ltd, Muktyala, Distt Krishna 1860 KCP Ltd, Muktyala, Jaggayyapeta Unit II 3520 KakatiyaCement Sugar and Industries Ltd, 297 Dondapadu, Melacheruvu

principal mineral based industries in the organised sector in the State are provided in Table-5.

Table - 5	(Contd.)
-----------	----------

Industry/plant	Capacity
, prant	('000 tpy)
My Home Cement Industries Ltd, Mulakapalli, Distt Visakhapatnam (G).	2000
NCL Industries Ltd, Kondapalli, Distt Krishna (G)	. 990
Orient Cement Ltd, Devapur, Kasipet.	5000
Panyam Cements & Mineral Industries Ltd, Cement Nagar, Distt Kurnool.	1000
Parashakti Cement, Jettipalem, Distt Guntur.,	1260
Penna Cement Industries Ltd, Talaricheruvu,, Tadipatri, Distt Anantapur.	2200
Penna Cement Industries Ltd, Boyareddypalli, Distt Anantapur.	2000
Penna Cement Industries Ltd, Ganeshpahad Damarcherla	1200
Prism Cement Ltd, Kotapadu, Kolimigundla.	4800
Rain Commodities Ltd, (Rain Cements), Boincheruvupalli, Peapully, Distt Kurnool	2770
Rain Cements, Ltd, Ramapuram, Mellacheruvu	1500
Ramco Cement Ltd, (formerly, Madras Cements), Jayantipuram, K.S. Rajanagar, Distt Krishna.	3650
Ramco Cement Ltd, Vizag Grinding Unit, Distt Visakhapatnam.	950
Shree Jayajothi (Subs. of Myhome Cement Ind.) Yanakandala, Distt Kurnool.	3200
Shri Chakra Cements Ltd, Alamada, Distt Vizianagaram (G).	260
Shri Chakra Cements Ltd, Narsimhapuri, Distt Gu	ntur. 310
Sagar Cements Bayyavaram, Distt Visakhapatnam	n (G) 200
Sagar Cements Mattampally	2350
Sagar Cement Ltd, BMM Cement Anantapur,	1000
UltraTech Cements Ltd, (APCW), Tadipatri, Distt Anantapur.	9000
Zuari Cement, Krishnanagar, Yerranguntala, Distt Cuddapha.	3800
Zuari Cement, Ltd, Sitapuram Dondapadu Mellacheruvu	1200
Chemical	
Andhra Sugars Ltd, Saggonda, 400 TPD (c Distt West Godavari.	austic soda) 99 (H ₂ SO ₄)
Allied Chem. Ltd, Gondiparla, 69.5 (c Distt Kurnool.	5.95 (Total) austic soda) 49.8 (Cl) 24.7 (HCl) 23.1 (KOH)
Shree Rayalseema High14.85 (bleachStrength Hypo Ltd, Gondiparla,4Distt Kurnool.	ing powder) 9.5 (H ₂ SO ₄) 15 (Oleum) (Contd.)

(Contd.)

ndustry/plant	Capacity ('000 tpy)
Ceramic	
Sentini Ceramica Pvt. Ltd, Kanukollu, Distt Krishna (JV with H R Johnson (I) Ltd)	58 mill. sq.m
Spartek Ceramics India Ltd, Narsingapuram, Distt Chittoor.	NA
Kajaria Ceramics Ltd, Vijayawada.	2.9 (mill. sq m)
Elcetrode	
ndus Elctrode Gundlapalli, Maddiapdumandal.	0.90
Magnarc Electrodes Pvt. Ltd, Pendurthy.	1.8
Fertilizer	
Agri Green Fertilizers & Chemicals Pvt. Ltd, Cuddapah.	30 (SSP)
Bhaskar Fertiliser (P) Ltd, Anantapur	45 (SSP)
Coromandel International Ltd, Visakhapatnam.	1300 (NP/ NPKs)
Coromandel International Ltd,	1925 (DAP)
Kakinada, Distt East Godavari.	(2011)
GDS Chemicals & Fert. Pvt. Ltd, Anakapalli, Visakhapatnam	36 (SSP)
K. P. R. Fertilizers Ltd, Biccavolu, E. Godavari	11300 (SSP)
Krishna Industrial Corpn. Ltd, Nidadavole,	45 (SSP)
Distt West Godavari.	33.5 (H ₂ SO ₄)
Vagarjuna Fertilizers & Chemicals Ltd, Kakinada, Distt East Godavari (Unit I & II)	1500 (Urea)
NG Fertilizers & Chemicals Pvt. Ltd, Kodurupadu, Distt Krishna	200 (SSP)
Prathyusha Chems and Fertilisers Ltd, Parwada, Visakhapatnam	100 (SSP)
Subhodaya Chemicals Ltd, Gauripatnam, Distt West Godavari	42.9 (SSP)
Pesticides	
ayalakshmi Fertilizers, Fanuku, Distt West Godavari	2000
Glass	
Friveni Glass Ltd, Kondagudem, Distt West Godavari	10 (mill. sq. m)
ron & Steel	
Visakhapatnam Steel Plant,	8856 (sinter)
Visakhapatnam 6300 (c	3400 (pig iron) rude/liquid steel)
Sponge Iron	raac, inquite steer)
Amoda Iron and Steel Pvt. Ltd,	60
ayanthipuram, Jaggayyapet Mandal, Aggayy	apet

Table - 5 (Contd.)

Industry/plant	Capacity ('000 tpy)
Apple Industries Ltd, Dhiral, Anantapur	150
Maa Mahamaya Industries Ltd, Vizianagaram	112
Pushpit Steel Pvt. Ltd, Merlapaka,Yerpendu, Chittor	86.4
SLV Steels and alloys Pvt. Ltd, Anantapur	60
Sri Sai Sindhu Industries Ltd, Tadpatri	52.5
Steel exchange India Ltd, Srirampuram,Visakhapatnam	250
Sree Rayalseema Green Steloy Ltd, Gooty, Distt Anantapur	36
Pig Iron	
Rishrtriya Ispat Nigam Ltd, Vishakhapatanam, Andhra Pradesh	6300
Sathavahana Ispat Ltd, Haresamudram, Distt Anantapur	210
Pellets	
Essar Steel Ltd, Visakhapatnam	8000
Ferroalloys	
Berry Alloys Ltd, Kothavalasa, Distt Vizianagaram	40 (Fe-Mn) 32 (Si-Mn)
Deccan Ferro alloys (P) Ltd, Pendurthi, Visakhapatnam	30 (Si-Mn) 10(Fe-Mn)
FACOR Alloys Ltd, Shreeramnagar, Distt Vizianagaram	90.3
Jindal Stainless (Hisar) Ltd, Kothavalasa, Distt Vizianagaram	40
Maithan Alloy Ltd, Atchutapuram	120
Hira Elector Smelters Ltd, Bobbili, Distt Vizianagaram	NA
Nava Bharat Ventures Ltd, Paloncha	125
Rhodium Ferro-alloy Pvt. Ltd, Gollapuram	8
Siri Smelters & Energy Pvt. Ltd, Bobbili	8.5
Petroleum Refinery	
HPCL, Vizag	8300
ONGC, Tatipaka, Distt East Godavari	66

Note: Data, not readily available for fertilizer and cement Industries on respective website, is taken from Indian Fertilizer Scenario, FAI Statistics, and Survey of Cement Industry & Directory, respectively.